Universidad de Sevilla Grado en Economía

Departamento de Economía Aplicada I Facultad de Ciencias Económicas y Empresariales

ESTADÍSTICA AVANZADA

EXAMEN DE SEPTIEMBRE

9-SEP-2011

DNI	Apellidos	Nombre	Grupo	

Para cada cuestión, traslade el número de la respuesta que considera correcta a la casilla de la siguiente tabla. No se equivaque con el número de la cuestión Rellene sus datos de identificación con letra muy clara

10 se equivoque con el número de la cuestion.									iuп.	Renene sus datos de identificación con letra muy ciara.										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	2	3	3	3	4	3	4	2	2	4	3	4	3	3	4	1	3	2	4	2

Modelo 1

- 1.- Sea X una variable aleatoria con densidad de probabilidad $f_{x}(x)$ definida en todo $x \in \mathbb{R}$. Entonces:
 - 1) $f_{X}(x) = P[X = x]$
 - 2) P[X = x] = 0 para todo $x \in \mathbb{R}$
 - 3) $F_x(x)$ sólo se puede conocer salvo una constante aditiva
 - 4) $f_X(x)$ no puede ser mayor que 1
- 2.-Sea (X,Y)vector aleatorio con Var(X) = Var(Y) = 1. Entonces Var(aX + bY) es igual a:
 - 1) aVar(X) + bVar(Y) + 2abCov(X,Y)
 - 2) $(a^2b^2)Var(X)$
 - 3) $a^2 + b^2 + 2abCov(X,Y)$
 - 4) $(a^2 + b^2)Cov(X,Y)$
- 3.- Sea una variable aleatoria $X \in P(\lambda)$ (modelo Poisson). Entonces:
 - 1) $E(X) = \lambda y Var(X) = \lambda^2$
 - 2) $E(X) = Var(X) = \lambda^2$
 - 3) $E(X) = Var(X) = \lambda$
 - 4) $P[X = 0] \in Exp(\lambda)$ (modelo exponencial)
- **4.-** Sea $X \in N(\mu, \sigma^2)$ entonces:
 - 1) $X = \mu + \sigma^2 Z$, con $Z \in N(0,1)$
 - 2) $Z = \mu + \sigma^2 X$, con $Z \in N(0,1)$
 - 3) $X = \mu + \sigma Z$, con $Z \in N(0,1)$
 - 4) $Z = \mu + \sigma X$, con $Z \in N(0,1)$
- **5.-** Sean $X, Y \in Be(p)$ dos variables aleatorias independientes, ambas distribuidas según un modelo de Bernoulli de parámetro p, entonces...
 - 1) $X + Y \in Be(2p)$
 - 2) $X \cdot Y \in Be(p)$
 - 3) $X + Y \in B(2, 2p)$ (modelo binomial)
 - 4) $X \cdot Y \in Be(p^2)$

- **6.-** Sea $X \in N(\mu, \sigma^2)$ entonces
 - 1) $P[X \le \mu + \sigma] = P[X \le \mu \sigma]$
 - 2) $P[X \ge \mu + \sigma] = P[X \le \mu + \sigma]$
 - 3) $P[X \ge \mu \sigma] = P[X \le \mu + \sigma]$
 - 4) $P[X \ge \mu + \sigma] = P[X \ge \mu \sigma]$
- 7.- Sea X una variable aleatoria absolutamente continua, con función de densidad de probabilidad f(x) definida en toda la recta real \mathbb{R} . Entonces
 - 1) $\int x \cdot f(x) dx = P[a < X < b]$
 - 2) $\int f(x)dx$ puede ser negativo si a < b
 - 3) $\int f(x)dx = F(a)$ 4) $f(x) \ge 0, \forall x \in \mathbb{R}$
- **8.-** Sea (X,Y) un vector aleatorio con momentos de segundo orden finitos. Si E[X] = 0 y $E[X \cdot Y] = 1$, entonces:
 - 1) E[Y] = 0
- 3) E[Y] = 1
- 2) Cov(X,Y) = 1 4) Cov(X,Y) = 0
- 9.- Sean X, Y las componentes de un vector aleatorio con matriz de varianzas covarianzas $\Sigma = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.

Entonces, Var(2X-Y+1) es

- 1) 4
- 3) 1
- 2) 5
- 4) 0
- 10.- Sean f(x,y) la función de densidad conjunta de dos variables aleatorias independientes, entonces, con la notación habitual...
 - 1) $f(x, y) = f_{y}(y) \cdot f_{y|y}(x)$
 - 2) $f_{Y+Y}(z) = f_Y(x) + f_Y(y)$
 - 3) $f_{y}(x) = f_{y}(y)$
 - 4) $f_{x}(x) \cdot f_{y}(y) \ge 0$

11.- Sea X una variable aleatoria con varianza finita. **Entonces:**

- 1) $E(X^2) = E(X)$
- 2) $Var(X) > E(X^2)$
- 3) $E^{2}(X) \leq E(X^{2})$
- 4) $E(X) \leq Var(X)$

12.- Si las X_i son variables aleatorias independientes e idénticamente distribuidas según un modelo de Poisson de parámetro λ , entonces:

1)
$$\frac{\sum_{i=1}^{n} X_{i} - \lambda}{\sqrt{\lambda}} \xrightarrow{L} N(0,1)$$

$$\frac{\sum_{i=1}^{n} X_{i}}{n - \lambda}$$
2)
$$\frac{n}{\sqrt{n\lambda}} \xrightarrow{L} N(0,1)$$

3)
$$\frac{n\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \xrightarrow{L} N(0,1)$$

4)
$$\frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \xrightarrow{L} N(0,1)$$

13.- Sea $\mathbf{X} = (X_1, X_2, \dots, X_n)$ una m.a.s. generada por un modelo $N(\mu, \sigma^2)$. Entonces:

$$1) \qquad \sum X_i^2 \in \chi^2(n)$$

1)
$$\sum X_i^2 \in \chi^2(n)$$
 3) $\frac{nS^2}{\sigma^2} \in \chi^2(n-1)$

2)
$$\sum X_i^2 \in \chi^2(n-1)$$
 4) $\frac{nS^2}{\sigma^2} \in \chi^2(n)$

$$4) \frac{nS^2}{\sigma^2} \in \chi^2(n)$$

14.- Sea $\mathbf{X} = (X_1, X_2, ..., X_n)$ una m.a.s. de tamaño *n* generada por un modelo Exponencial $Exp(\theta)$. La distribución de probabilidad conjunta de X es

- 1) $f_{\mathbf{x}}(\mathbf{x};\theta) = \theta e^{-\theta \mathbf{x}}$
- 2) $f_{\mathbf{x}}(\mathbf{x};\theta) = \theta^{\sum x_i} e^{-\theta \sum x_i}$
- 3) $f_{\mathbf{x}}(\mathbf{x};\theta) = \theta^n e^{-\theta \sum x_i}$
- 1) $f_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}) = k$ en todo \mathbf{R}_n

15.- Sea $\mathbf{X} = (X_1, X_2, \dots, X_n)$ una m.a.s. generada por un modelo $N(\mu, \sigma^2)$. Entonces:

1)
$$E(\overline{X}) = \frac{\sigma^2}{n}$$

1)
$$E(\overline{X}) = \frac{\sigma^2}{n}$$
 3) $Var(\overline{X}) = \frac{S^2}{n}$

$$2) \quad E(S^2) = \sigma^2$$

4)
$$Cov(\overline{X}, S^2) = 0$$

16.- Si $\mathbf{X} = (X_1, X_2, \dots, X_n)$ es una muestra aleatoria simple generada por un modelo $X \in Ge(\theta)$ (modelo Geométrico), entonces para i > 1

1)
$$E(X_1 | X_i) = \frac{1}{\theta}$$

2) $X_i(1-X_i) \in BN(\theta, 1-\theta)$ (Binomial negativo)

3)
$$E(\mathbf{X}) = \frac{1}{\theta}$$
 4) $Var(\mathbf{X}) = \frac{1}{\theta^2}$

4)
$$Var(\mathbf{X}) = \frac{1}{\theta^2}$$

17.- Sea $\mathbf{X} = (X_1, X_2, \dots, X_n)$ una m.a.s. generada por un modelo $N_1(\mu, \sigma^2)$. Entonces:

1)
$$\frac{\overline{X} - \mu}{\sigma} \sqrt{n} \in t(n)$$

1)
$$\frac{\overline{X} - \mu}{\sigma} \sqrt{n} \in t(n)$$
 3) $\frac{\overline{X} - \mu}{S} \sqrt{n-1} \in t(n-1)$

2)
$$\frac{\overline{X} - \mu}{\sigma} \sqrt{n-1} \in t(n-1)$$
 4) $\frac{\overline{X} - \mu}{S} \sqrt{n} \in t(n)$

18.- Si X e Y son variables aleatorias independientes, entonces:

- 1) $P[X+Y \leq z] = F_v(z) \cdot F_v(z)$
- 2) $P[\min\{X,Y\} \le z] = 1 (1 F_{V}(z)) \cdot (1 F_{V}(z))$
- 3) $P[X \cdot Y \leq z] = F_v(z) \cdot F_v(z)$
- 4) $P \lceil m \acute{a}x \{X, Y\} \le z \rceil = 1 F_X(z) \cdot F_Y(z)$

19.- Sea $\mathbf{X} = (X_1, \dots, X_n)$ una m.a.s. generada por el modelo $f(x;\theta)$ con media μ y varianza σ^2 finitas. Entonces:

1)
$$\overline{X} \in N(\mu, n\sigma^2)$$
 3) $\overline{X} \in N(\mu, \frac{\sigma^2}{n})$

3)
$$\overline{X} \in N(\mu, \frac{\sigma^2}{n})$$

2)
$$\frac{\overline{X} - \mu}{S} \sqrt{n-1} \in t(n)$$
 4) $E(\overline{X}) = \mu$

4)
$$E(\overline{X}) = \mu$$

20.- Dado el vector aleatorio $X=(X_1, X_2, ..., X_n)$, obtenemos el estadístico $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. Para que $E[\bar{X}] = \mu$, siendo μ la media poblacional, es únicamente necesario que las variables componentes...

- 1) sean independientes
- 2) sean idénticamente distribuidas
- independientes e idénticamente 3) sean distribuidas
- 4) siempre se verifica aunque independientes ni idénticamente distribuidas